Annotation of functional impact of voltage-gated sodium channel mutations
نویسندگان
چکیده
منابع مشابه
Annotation of functional impact of voltage‐gated sodium channel mutations
Voltage-gated sodium channels are pore-forming transmembrane proteins that selectively allow sodium ions to flow across the plasma membrane according to the electro-chemical gradient thus mediating the rising phase of action potentials in excitable cells and playing key roles in physiological processes such as neurotransmission, skeletal muscle contraction, heart rhythm, and pain sensation. Gen...
متن کاملA prokaryotic voltage-gated sodium channel.
The pore-forming subunits of canonical voltage-gated sodium and calcium channels are encoded by four repeated domains of six-transmembrane (6TM) segments. We expressed and characterized a bacterial ion channel (NaChBac) from Bacillus halodurans that is encoded by one 6TM segment. The sequence, especially in the pore region, is similar to that of voltage-gated calcium channels. The expressed cha...
متن کاملFunctional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2.
Two mutations that cause generalized epilepsy with febrile seizures plus (GEFS+) have been identified previously in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel (Escayg et al., 2000). Both mutations change conserved residues in putative voltage-sensing S4 segments, T875M in domain II and R1648H in domain IV. Each mutation was cloned into the orthologous...
متن کاملDeterminants of voltage-gated sodium channel clustering in neurons.
In mammalian neurons, the generation and propagation of the action potential result from the presence of dense clusters of voltage-gated sodium channels (Nav) at the axonal initial segment (AIS) and nodes of Ranvier. In these two structures, the assembly of specific supra-molecular complexes composed of numerous partners, such as cytoskeletal scaffold proteins and signaling proteins ensures the...
متن کاملVoltage-gated sodium channel (NaV) protein dissection creates a set of functional pore-only proteins.
Many voltage-gated ion channel (VGIC) superfamily members contain six-transmembrane segments in which the first four form a voltage-sensing domain (VSD) and the last two form the pore domain (PD). Studies of potassium channels from the VGIC superfamily together with identification of voltage-sensor only proteins have suggested that the VSD and the PD can fold independently. Whether such transme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Human Mutation
سال: 2017
ISSN: 1059-7794
DOI: 10.1002/humu.23191